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Amplitude-domain mechanical spectroscopy: a way to systematic 
analysis 
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Abstract 

While mechanical spectroscopy analysis has been carried out mostly in the frequency domain (especially via 
temperature),  the amplitude domain has till now been far less considered. Some possible reasons for the above 
are indicated and amplitude-domain mechanical spectroscopy (ADMS), a promising investigation tool in materials 
science and engineering, is briefly introduced. 

Concerned mainly with elastic and dissipative phenomena, the amplitude-domain mechanical spectra are related 
to some singularities or peculiarities in the so-called internal friction (or modulus) amplitude-dependent curves 
(ADCs). A phenomenological analysis is thus proposed, which proved useful for translating the ADCs into the 
relevant damping spectra vs. amplitude, thus performing ADMS. 

The observed repetitiousness of likely fractalic regularities observed in ADCs seems to encourage a general 
model. A possible guideline in such a synthesis effort is indicated as an extension, in terms of generalized mobile 
entities and pinning agents, of a previously advanced dislocation damping model which uses the device of modelling 
the new complex picture mostly by a stretched-multipinned-twanged string. 

1. General background 

Most of the work on internal friction (IF) and dynamic 
modulus is carried out in the temperature domain and 
such an approach, though somewhat impure, essentially 
represents a frequency-domain analysis. The reasons 
for such a prevalence can be summarized as follows: 
(i) the peaks are generally quite evident in the tem- 
perature-domain curves; (ii) the theoretical background 
is fairly well established; (iii) the relaxation times and 
activation energies or volumes are easily obtainable; 
(iv) in most cases, the experimental difficulties are 
minor. 

The major interest in developing amplitude-domain 
investigations can be justified as follows: being directly 
expressed in terms of stresses and strains, the amplitude- 
domain analysis represents a quite immediate infor- 
mation source, especially for structural materials, whose 
main property is simply the mechanical strength. 

Connected with elastic and dissipative phenomena, 
amplitude-domain mechanical spectroscopy (ADMS) is 
based on IF (or modulus) amplitude-dependent curves 
(ADCs). Though the ADCs have been considered by 
various researchers of the IF family, it can hardly be 
said that ADMS represents an established and widely 
used technique. 

Apart from most people's reluctance to face non- 
linear problems, the main reason for this can be seen 

in the general tendency to disregard any singularity in 
the ADCs and to consider any unexpected or strange 
trend of them as an experimental error rather than 
the expression of a physical effect. Till today, any peaks 
in ADCs have mostly been considered as "anomalous". 

An extended review of experimental data, devoted 
to attaining a general phenomenological picture of the 
ADCs shape and trend, has previously been carried 
out by one of the present authors [1-5]. For any details 
we must refer to the quoted preceding papers. 

The main conclusion, from the phenomenological 
point of view, was that ADCs tend to be typically 
discontinuous, being composed of one or more se- 
quences of linear, parabolic and sigmoidal (LPS) seg- 
ments (LPS sequences). 

In the present paper, we want to point out three 
more points: (i) the fact that a parametric analysis 
derivable from the ADCs discontinuous trend represents 
a self-consistent way to perform ADMS; (ii) the rising 
view that ADCs are fractalic in nature, in the sense 
that their "cumulative" trend can reproduce the trend 
of one or more of their linear, parabolic or sigmoidal 
component segments; (iii) the guidelines we are fol- 
lowing in order to pursue an amplitude-dependent 
damping model congruous with the above-mentioned 
discontinuous trend and repetitive phenomenology. 
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2. The “parametric analysis” of ADCs as a tool for 
ADMS - assumed fractalic nature of ADCs 

The assertion about the LPS nature of the trend in 
ADCs means, with reference to Fig. 1, that each com- 
ponent segment of an ADC is describable by one of 
the following forms: for the linear case 

AHO,i=a(e-Eo.i) (I) 

For the parabolic case 

A~l.i=Pi(c--~,i)~’ 

and for the sigmoidal case 

(2) 

A,,i=Bi exp[ -AJ(E- l z,i)] 

where E is the maximum amplitude of the alternating 
strain, i is an index represented by one letter of the 
sequence m, n, p, q, r, s, t (depending on the “order” 
of the LPS sequence considered) and all the other 
quantities and parameters are intrinsically positive (or 
at least null). As to their meaning, the following con- 
siderations apply (see also Fig. 1). The quantities in 
the first terms of eqns. (l)-(3) can be considered as 
(purely) amplitude-dependent (e.g. hysteretic) com- 
ponents of the IF. The quantities AIo,i, Ani and A,,i 
in Fig. 1 can be considered as additive amplitude- 
independent (e.g. dynamic) IF components (to be added 
to the relevant amplitude-dependent components, in 
order to obtain the total damping). The quantities E,,~, 
E~,~ and ez,i represent the critical strain amplitudes at 
which trend discontinuities take place and the IF com- 
ponents with the same indexes arise. The remaining 

I AFU.S= ~s~s--EI,$ \k---- 
-- 

Fig. 1. Schematic representation of an (IF) ADC characterized 
by two consecutive sequences of LPS segments. A represents the 
total damping (log decrement) and the indices H and I denote 
amplitude-dependent and amplitude-independent components 
respectively. l is the (maximum) amplitude of the alternating 
strain and E~,~, E,,~ and l r,i represent critical transition values. 

factors such as ai, (Y~, pi, Ai and Bi are parameters equal 
to and very precisely defining the shape of each com- 
ponent segment of the ADC considered. 

Given an ADC expressed by a set of experimental 
points, we designate as “parametric analysis” any pro- 
cedure allowing us to determine the pertinent values 
of the parameters and components appearing in eqns. 
(l)-(3) and Fig. 1. 

The parametric analysis appears to be of interest, 
in principle, for the two following reasons: (i) it allows 
us to express the ADCs shape and trend by a defined 
set of numbers, thus changing the ADC shape from a 
qualitative to a quantitative monitor of the material’s 
properties; (ii) it splits the ADC into its various IF 
components and exactly locates, in the amplitude scale, 
where each of them come; thus it represents a self- 
consistent tool to perform ADMS, as anticipated in 
the preceding section. 

As an example, let us consider a computer-aided 
parametric analysis we carried out on some amplitude- 
dependent IF results obtained by Marenco and Povolo 
on oxygen-doped niobium (see ref. 6, Fig. 7). 

The analysis results are reported here in Fig. 2, where 
the values of the independent components, critical 
amplitudes and parameters obtained for one of the 
curves (121 K) appear in the table, as an example. 
The full curves represent the segments (calculated 
following eqns. (l)-(3)), which contribute to make up 
each interpolating (discontinuous) curve. 

The following purely phenomenological considera- 
tions apply. 

(a) Though less pronounced than in many other cases 
the LPS fine structure is nevertheless easily identified. 

(b) The fit between the experimental points and the 
calculated curves is good (standard deviation always 
lower than 0.002) and much better than with any 
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Fig. 2. An example of ADMS parametric analysis as applied to 
experimental points (log decrement A vs. amplitude e) obtained 
by Marenco and Povolo (see ref. 6, Fig. 7). 
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continuous smooth curve. For instance, the best fit in 
Fig. 7 of the original paper by Marenco and Povolo 
shows a standard deviation higher than 0.02; however, 
various attempts made by us to interpolate the points 
of Fig. 2 with smooth curves did not attain a standard 
deviation value lower than 0.008. 

(c) Two LPS sequences are present in the 69 and 
121 K curves, while some points at the lowest (strain) 
amplitude could suggest the possibility of a third se- 
quence; and such a low amplitude q sequence is easily 
detectable in the 182 K curve. 

(d) By comparing the curves pertaining to the different 
temperatures, it can be seen that each component 
present in a curve can find its counterpart in another 
Curve.  

(e) The "gross trend" of the ADCs in Fig. 2 resembles 
a linear (182 K curve), a sigmoidal (121 K curve) or 
a parabolic (69 K curve) trend; this means that their 
gross trend too can resemble one of the typical trends 
of their component segments; and these are typical 
features of fractal behaviour. 

All these statements, in confirming the repetitious- 
composite nature of ADCs, seem to encourage: the 
parametric analysis as a systematic approach to ADMS; 
the hypothesis of the fractalic nature of ADCs; the 
pursuit of a generalized model for amplitude-dependent 
damping. 

3. Physical-structural interpretation and model 

In the preceding section, the capability of the par- 
ametric analysis as a self-consistent tool for splitting 
an ADC into its components, thus performing ADMS, 
has been illustrated in merely phenomenological terms. 
However, in order to make ADMS a materials science 
investigation tool, as far as possible self-consistent, a 
physical interpretation and model are needed. Given 
that the phenomenology found is anything but simple 
and that it deals with non-linear problems, we cannot 
pretend to be rigorous and exhaustive here in our 
pursuit of such a goal. We will only try to delineate 
some possible guidelines. 

For this purpose, it may be useful go back to a 
qualitative model previously advanced for dislocation 
damping (see ref. 1, plus some additions from refs. 
2-5). The previous picture is a variant of the Gran- 
ato-Lficke (GL) model [7]; it represents an attempt 
to justify the possible existence of the linear and par- 
abolic IF components, in the low-amplitude side of the 
curves. This existence, not provided by the GL theory, 
was ascribed to the possibility that some of the potential 
pinning atoms would form a somewhat extended im- 
purity cloud around the dislocation, instead of strictly 

self-locating on its core (as the GL theory considers). 
In such hypothesis, the linear (AHo) and the parabolic 
(Am) components of the damping were ascribed to the 
movement of the dislocation inside its impurity cloud. 
Namely, the two lines of behaviour (linear and parabolic) 
were related to two different ways of dislocation motion 
inside the cloud. It had been supposed [2] that movement 
as in Fig. 3(a) could take place at the lowest amplitudes, 
just beyond a critical value Co, with a configuration 
mainly controlled by the dislocation flexibility. The linear 
increase of the damping had been ascribed to this kind 
of motion. 

At higher amplitudes (greater than el),  when the 
controlling factor becomes the line tension of the dis- 
location, a movement as in Fig. 3(b) could take place, 
with a parabolic increase of the damping. 

At even higher amplitudes, above a critical strain 
amplitude e2, the breakaway phenomena would take 
place as provided by the GL theory. 

Consequently, the possibility of applying the GL plot 
[7] to the sigmoidal (GL) component AH 2 of the damping 
was considered; it was assumed that the Lc value [7] 
thus obtained would continue to represent the mean 
interpinner distance (along the dislocation path) at the 
distance from the dislocation core at which the break- 
away process takes place. This can represent very useful 
quantitative data, irrespective of the fact that a quan- 
titative relationship with microstructure is not available 
for AHo and Am. 

This is, briefly, the substance of the previous model; 
for any more details we refer to the previous papers 
[1-6]. 

At the time the previous model [1] was advanced, 
the fact that more than one LPS sequence may be 
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Fig. 3. Two alternatives concerning the motion of a dislocation 
inside an extended pinning atmosphere: (a) configuration and 
kind of movement controlled by the dislocation's flexibility; (b) 
configuration and kind of movement controlled by the dislocation's 
line tension. 
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found in an ADC and the consequent major complexity 
of ADCs were not yet known. So the previous model, 
like the GL theory, dealt with dislocations only. 

The subsequent observation of a fully analogous 
phenomenology, in materials and at amplitudes where 
it is hard to think that pure dislocation damping be 
operative, induces us to consider a further extension. 

This extension, a generalized vibrating-string model, 
assumes that many other structural defects (and defect 
compositions) can move and dissipate energy nearly as 
dislocations; or, if preferred, as pinned strings, vibrating 
in a dissipative medium. 

In this context the more or less complex "defects" 
that could play a role in the amplitude-dependent 
damping should be classified into two general classes: 
mobile entities (or moties, for short) and pinning agents 
(or pinners for short). 

Into the first class (moties), microstructural entities 
are allocated whose movement could give rise in some 
way to internal damping. Some examples of moties 
could be represented by: single dislocations, dislocation 
structures, stacking faults, subgrain boundaries, grain 
boundaries, magnetic domain boundaries, magnetic flux 
lines, polymeric chains, embedded fibres in composites 
etc. (point defects are not considered). 

Into the second class (pinners), microstructural ent- 
ities are allocated which may be able to block or limit 
in some way the motion, inside the matrix, of the moties. 
Some examples of these kind of obstacles could be 
represented by: solute atoms, vacancies, jogs, dislocation 
intercepts, solute atom aggregates like Guinier Preston 
zones, heterogeneous components such as precipitates 
or dispersed phases, interceptions between embedded 
fibres or polymeric chains etc. Among the possible 
moties, entities which are not just line defects have 
also been included; similarly, entities which look much 
more complex than point defects have been included 
among the possible pinners. Having established the 
above general classification, the following considerations 
or assumptions are made. 

(a) The various kinds of moties are more or less 
mobile depending on both their intrinsic mobility and 
the pinning effectiveness of the interacting pinners. 
Thus the whole disposable amplitude range can be 
divided into subranges where only one kind of mo- 
tie-pinner couple represents the critical (or even the 
main) controlling factor. 

(b) It is expected that, in the subrange of index i, 
the pertinent moties have the possibility of becoming 
hysteretically mobile, provided a given critical stress 
amplitude eo.~ is reached. Their motion would be able 
to contribute to amplitude-dependent damping through 
a linear component AHo,/and/or a parabolic component 
Artl,~ until a breakaway phenomenon started taking 
place. In this case, the pertinent moties would be pulled 

away from the pinners that were critical at the amplitude 
considered, thus giving rise to a sigrnoidal damping 
component Am,,. 

(c) The assumption is made that any presence of a 
sigmoidal component of damping in the ADC represents 
a symptom of a breakaway phenomenon taking place 
at the corresponding strain amplitude, this means that 
the moties belonging to the considered subrange start 
to abandon their current (critical) pinning obstacles to 
begin a longer path in the matrix. 

In this picture it becomes nearly automatic to assume 
that the critical motie-pinner couples should be re- 
sponsible for the amplitude-dependent component per- 
taining to the amplitude subrange considered. 

The origin of the amplitude-independent components 
such as Axo,~, An.i and A~2.~ is, conversely, less clear. 
We hypothesize in this picture that free and well- 
anchored moties may be responsible for these com- 
ponents by some dynamic mechanism. Namely, the well- 
anchored moties could contribute by a mechanism 
analogous to the GL dynamic mechanism [7]. The free 
moties could additionally contribute by a presently 
unknown mechanism, e.g. by a twanging effect due to 
the pinners, acting as the tooth of a bidimensional 
comb plectrum. 

4. Discussion and conclusions 

Owing to the non-linear character and the relevant 
phenomenological complexity of amplitude-dependent 
damping, the picture outlined at the end of the previous 
section cannot rise, at present, to the rank of a fully 
quantitative model. It should mostly be regarded as a 
frame of a mosaic into which to locate the pieces of 
theory proposed from time to time. 

An already asserted element of such a mosaic is 
represented by the GL equation (eqn. 2.1 of ref. 7, p. 
790), expressing the amplitude-dependent dislocation 
damping. In the present view, a very general validity 
of that equation is postulated. It is assumed it can be 
valid, mutatis mutandis, for most couples of moties and 
pinners and not only for dislocations and dilute pinning 
atoms (at very low temperatures). In this sense we 
affirmed that useful information on the interpinner 
distance at breakaway can be drawn from the GL plot. 

Another example may be represented by eqn. 2.2 of 
the same GL paper, which may be able to yield in- 
formation presumably connected with damping con- 
tributions (e.g. the AIo.i components) due to the still 
anchored moties. 

The proposed ADMS systematic approach (the par- 
ametric analysis) is able to: (i) yield the parameters 
defining, via GL formulas, the hysteretic and some 
dynamic components of the IF yielding inter alia data 
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on the interpinner distances at the various breakaways; 
and (ii) detect all the critical amplitudes Eo,~, el,~ and 
e2,~ at which "something new happens" concerning 
micromechanical behaviour. Hence the proposed picture 
changes from a purely qualitative to a partly quantitative 
model. 

Other remarks must be deferred. Only one more 
consideration should be allowed. Sigmoids (see also 
Fig. 2) by their nature present a maximum: the possibility 
that the so-called "anomalous peaks" sometimes found 
in ADCs may be simply related to such maxima, i.e. 
to the breakaway phenomena, should be at least con- 
sidered. 
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